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PRESSURE DISTRIBUTION ON BLUNTED FLAT PLATES

WITH SURFACE INCLINATION

(Title Unclassified)

I INTRODUCTION

This report is presented as a partial fulfillment of the requirements
of Air Force Contract No. AF 33(616)-6692 dated 25 May 1959,

The object of this report is to present and analyze the experimental
surface pressures measured at a nominal Mach number of 8 on blunted
flat plates. The tests are conducted in the B tunnel of the von Karman Gas
Dynamics Facility, Arnold Engineering Development Center. Surface
pressures and the heat transfer to the model were measured on two flat
plates blunted by a semi-cylindrical leading edge. The nose radii of the
two models are 0. 10 and 0. 50 inches. Both models had a chord length of
11.0 inches.

In this report the experimental pressure distributions are presented.
The effects of angle of attack, Reynolds number and nose radius on the
surface pressure distribution are considered. Tests were conducted over
a range of 0° to 30° surface inclination. The free stream Reynolds number
varied from 0.43 x 108 to 2.00 x 106 per foot. The heat transfer data will

be published in a later report.
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Several existing theories are presented and their comparisons with
experimental data are made. Also presented are shadowgraphs of the

flow about each model for several angles of attack.,
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empirical (1/2)*? or zero

SYMBOLS

quantity defined by Equation 43

nose drag coefficient defined by Equation 47

nose cylinder diameter - inches

stagnation enthalpy - ft?/sec?

Mach number

pressure - lbs/ft

quantity defined by Equation 41

quantity defined by Equation 46

local velocity - ft/sec

nose radius - inches

Reynolds number

gas constant - 1716 ft?/sec? °R; model nose radius, inches
entropy - ft?/ sec’ arc length measured from stagnation point, inches
temperature °R

velocities defined in Figure 12

chordwise direction, inches

angle of attack - positive nose up

ratio of specific heats
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A shock stand-off distance (see Figure 12)

€ shock wave angle measured from free stream

°] flow deviation measured from free stream
Mach angle (sin™! L

v ngle (sin M)

P density - slugs/ft3

Subscrigts

e o) free stream conditions

0 free stream stagnation conditions

Be stagnation conditions behind a normal shock

6 local conditions in the flow field outside the boundary layer

w conditions at wall
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III APPARATUS AND PROCEDURE

A, Tunnel

All tests were conducted in the Mach 8.0, 50 inch diameter con-
tinuous axisymmetric wind tunnel (Tunnel B) at the von Karman Gas
Dynamics Facility, Arnold Engineering Development Center, Tullahoma,
Tennessee. A complete description of this facility may be found in
Reference 1.

B. Models

Both models were constructed of type number 304 stainless steel.
The surface finish was nominally 50 microinches while the skin thickness
was 0.25 inches, The nose radii of the two models are 0.10 inches and
0.50 inches, each model being 11.0 inches long. A photograph of the 0. 50
inch radius model, before being positioned in the tunnel, is shown in
Figure 1. The 0,10 inch radius model installed in the tunnel is shown in
Figure 2. The model sting support and one cooling shoe can also be seen.
Figure 3 shows the 0.50 inch radius model with the side and top plates
removed so that the model instrumentation is visible.

Since the same models were used in the heat transfer tests, slots
were milled longitudinally so that the skin thickness in the vicinity of the
thermocouples was nominally 0.050 inches. The thermocouples were
installed in these slots. A more thorough and comprehensive description

of the heat transfer aspect of the models will be given in subsequent reporis.
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Static pressure tubes 1/16" O.D. with a 0.012" wall thickness
were installed on the model. These orifices were placed in staggered
rows to one side of the center line. Thermocouples were symmetrically
placed in identical locations on the opposite side of the center line. The
staggering technique was used to obtain a small axial placement of tubes.
The location and number of the tubes used for each model is shown in
Figures 4 and 5 and Tables | and 2 for the 0. 10 inch radius and 0.50 inch
radius models, respectively.

C. Test Conditions

All tests were conducted at a nominal stagnation temperature of
900°F. Three stagnation pressure levels, namely, 100 psia, 240 psia and
480 psia, were chosen to determine the effect of Reynolds number variation
on the pressure and heat transfer results. Data obtained at the 100 psi
level was inconsistent and therefore was not included in this report. The
surface inclination of the plate varied from 0° to 30° in 2 1/2° increments.
However, only representative angles of attack of 0°, 59, 10°, 150, 20°
and 30° were chosen for this report.

The variations in test conditions influenced the tunnel boundary

layer which in turn affected the tunnel Mach number. The test conditions

are summarized below.
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Model II(A)

P, = 240 psi M =8.03
P, = 480 psi M = 8.03
Model II(B)

P, = 240 psi = 8.03
P, = 480 psi M = 8,08
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IV DISCUSSION OF EXPERIMENTAL RESULTS

All the pressure data used in this report are '"preliminary unchecked
data". Since preliminary data were used certain inconsistencies in the
data arose and were unaccountable for. Therefore, questionable data were
usually excluded from this report.

Because of the small nose radius on Model II{A), the nose region
(04 x/d <€ 0.5) was uninstrumented. Results of the pressure distribution on
the nose region of Model II(B) are shown in Figures 6 through 11. Modified
Newtonian plus Prandtl-Meyer pressure distribution closely approximates
the experimental distribution,

In general, the data are self-consistent and comparison with several

existing theories will subsequently be discussed in this report,
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V  THEORETICAL ANALYSES

A, Two-Dimensional Rotational Characteristics

The method of characteristics for supersonic rotational flow can
be utilized to prediét the flow field about blunted two-dimensional bodies.
However, to begin the computation, properties in the region between the
shock and body in the supersonic region must be known, Thus, the computa-
tion procedure that was utilized was divided into two categories:

. Subsonic-Transonic Flow About a Circular Cylinder

2. 2-D Rotational Characteristics over an Arbitrary Body

Blunted by a Circular Cylinder
A description of each category with the pertinent equations follows.

1. Subsonic-Transonic Regiion

The flow field about two-dimensional circular cylinders has
been analyzed by several authors (Refs. 2, 3 and 4). In each method, the
technique involved in computing the flow field is quite laborious and,
consequently, time consuming. Since the object of this analysis is to
define the properties in the transonic-supersonic region of the flow and not
the details in the subsonic region, an approximate scheme was devised.

This method proceeds by assuming a shock shape. The rela-
tion defining the shock shape must be "even', hence, a shock of the following

form was used (Figure 12)

rg =T, tA+b20%+b, 0% (1)
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Since the shock wave radius in the vicinity of the stagnation region is known
to be the best approximated by a concentric cylinder of radius (ry + A), the
square term must be eliminated. Therefore, a shock shape of the form

rg =T, +4+by 0 (2)
was used, where the parameter b4 is to be determined from mass flow
considerations. That is, equating the mass flow entering the shock (OA)
to the mass flow passing through (AB) (Figure 12) provides the necessary
cirteriox; to determine by.

Equating mass flow, and retaining only the linear terms in

the derivatives one obtains:

2 (8+by04)
_ + ou
PoovooYA— (ar) (rA r) up (E')A(IA'I‘) dr +
o}
(3)
A+b,04
+ ) (rA ]l: A(rA r)| dr
—;-(A+b4o )

Since the quantity b, can be expected to be small, only linear terms in b4
were retained throughout the entire analysis. The pressure at point B was
obtained from Newtonian flow. The velocity u, and density p were then
obtained from compressible flow relations.

From Crocco's theorem,

R Grad S =Curl VxV (4)
Y
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expanded in cylindrical coordinates one obtains

u ou Iﬂ
~ulz e T o0 ) (5)

|
|

But at the body

98 _ 1 9v _
-a-;—Oa.nd ;'5'6—0
hence
dJu - _(u
(32),= - (2) (6)

Differentiating the relation

1
R
p=pseE-(—%—L)] v- 1 (7)

9 ) 0
in the r direction, one obtains (8_1'E)B expressed in terms of ( B_uT)B‘ Hence

the first integral of Equation (3) can be evaluated in terms of by .

Defining
r dr 4b, 03
B = tan"! L8 L-tan”? kit S (8)
rg do rp +A+bg 0%
which when simplified can be written as
B=p,b, (9)
where
4 @3
B " Toia

In order to evaluate the second integral of Equation (3), the velocity
and density and their derivatives immediately behind the shock must be

determined, as a function of by- Within the approximation considered, the
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velocity components behind the shock can now be expressed in the following

form:
u =ug tbyu, (10)
vV = vy tbyv, (11)
P =P tbyp, (12)
where

u_ =U_ Sin 0

B, 1
uj =m cos @ Zfo)Sil‘lzo o5 EU +U&COSZO'(Y'1] -
(¢ o)
- 2 U, Sin 0 Sin z?_J

1
2 ———— 3 2 2 - - - _ 22

Vo (Y1) U Em@tanc{yUoo+Uooco$ 20- (y 1)} cosO{(y 1)+2U/ Sin 0}

2 -
1 (Y+1)U E“O{ZU Sint 0 - oy
+2Ua2) cos @ Sin ZEI

r‘(\(*' 1) Mof) cos? @
p_= p
° [(Y- 1) Méo cos?Q+2| o©

2(y+1)M;) B,Sin 20

+U§° cos20 -y + 1}

P1 = 2 2
EY-I)MCDCOSZQ + 2]
and
Up = Vo IV,
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In addition, the entropy immediately behind the shock (Point A,

Figure 12) can be expressed as

AS AS
AS o) as,
(v-Dg =(y-) g +tb(y-DR (13)

where

AS 2y Mz, Cos?0 - (y-1) (y+1) M2 Cos? 0

(y-1) —=2 = log,, -y 1oge
Y+l (v-1) M, Cos? 0 +2
and
2 -1 2
A51 = ZYMm + Y(Y )Mm - __X

(y-1)—L =B,Sin20 .
R 2YME Cos?0-(y-1) (y-1)MZ Cos?g+2 Cos? @

From Equations (10), (11) and (12) the derivatives with respect to 9 of

the following quantities; u, v and _?(_S_ , can be obtained in the form

d¢, _ déo by a8 (14)
do  do de

With the system of equations
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Pace 14
™
YR ar T 3r "T 90
a? 0S8 u+3u l_fiy_)
78 86 VIr*F -7 5
L (15)
ds_iS_ s dr
de = do *3r do
dw_ B odr
do - 00 t By do
dv v  Bv dr
do 086 r dé —)

The six unknowns

bu 2u oy B 95 3S
30’ Or 30’ or ' 00’ or

can be determined.

The remaining term to be evaluated, %g— » can be obtained from

the continuity relation

1 0 )

T 5o (pu)+ 57 (pv) =0 (16)
That is,

% __ |p Bu,p B, u 9

5r ~ |rv B0 TV 'a';*;v’sa | (a7)
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where every term in the square bracket is known at the shock, in terms
of by.

The second integral of Equation (3) can now be evaluated in terms
of by. Hence, Equation (3) is now reduced to a linear algebraic equation
which will yield the value of by.

In order to perform the numerical computation, it is necessary
to know the shock detachment distance A, The results of the constant
density solution (References 2, 5 and 6) yield detachment distances which
are approximately 55% too small at Mach 3 and 45% too small at Mach 5.

The first order solution of Whitham (Reference 2) is given by

- Th _ 1 - 1 49\
n, sz .~ = . lo —_— (18)
b7 rg o fe 3
and A = pz/pl -1

or more exactly M is the value of n for which the following equation is

satisfied
= 1,0 K, (\n)
O:E;:+1)K,(\}-XK'1()\_)J —‘—ﬁl) -Exn) I, )=\ ITIN) ——-L;l—-— (19)

I, and K, are modified Bessel functions of the first and second kind,

' ]
respectively. I,and K, are their derivatives,

LM =3 [l +1,00]
- (20)

__ 1 .
K, \)=- > E{o(x) + Kzo‘l.l
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The results of the numerical solution of Belotserkovskii (Reference 3) are

compared to the first order solutionof Whitham (Reference 2) in the table

below:
Belotserkovskii Whitham
(Ref. 3) (Ref. 2)
M=3 Alrp =0.703 A/ry =0.305
M=4 = 0,546 =0.279
M=5 = 0.481 = 0.265

In order to find the shock detachment distance at Mach 8.00, the first order
solution and the "exact" solution of Reference 2 (Eqs. 18 and 19) were solved
and the results were A/rp = 0.234 and 0.279, respectively. These results
were obviously too smali. To determine the detachment distance, sirce
data at M = 8.0 was not available in literature, Equation (18)'was used as

a curve fit for Belotserkovskii's data. That is

1 4
np=1- ——— log. =0, + AN) (21)
b 200, T AN) e 3°7°
where
A= (P -1 = 4.000
o]
1 M=5.00

An=(n -0 = 0.565

Myt < 8.00 ( )M=5.00
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The value for the detachment distance, A, determined from the
above relation is
A/ry =0.422
The corresponding value of by obtained from Equation (3) is
by =0.1815

Thus the shock shape is defined as

Ts - 1.422 +0.1815 % (22)
r
b
and at 0 = 55°
r
== - 1.57
Ty

With the shock specified, the velocities u and v and the entropy
S/R and their derivatives in the r direction are known at the body and at
the shock. To obtain data in the region between the shock and the body, a
third order equation was used. In each case, the four boundary conditions
were used to solve for the four coefficients. Hence along the line, 0 = 55°,
the following properties were determined at several points:

x/ry, y/tp, SIR, P/Pg, 0, 1

These data are the input to the characteristics analysis,

2. Two-Dimensional Rotational Characteristics

The analysis of the flow over blunted two-dimensional bodies has

been computed by the method of characteristics for a rotational flow.
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The equation of motion, when the total enthalpy Hy is constant

in the flow, can be expressed along the characteristic lines in the following

form
1 dP do
y P sin L cos (23)

‘ along the characteristic line

d
tan (0 + p) = —df (24)
and 1dp__ do =0 (25)
Yy P sinp cosp

along the line
- =
tan (0 -p) = =X (26)

and
ds =0 (27)

along the streamline defined by

4y : tano (28)
dx

If the velocity vector, total enthalpy, and entropy are known at two points
A and B (see sketch), the position of a point C at the intersection of the
tangents AC to the characteristic line of the first family from A and the
tangent BC to the characteristic line of the second family from B can be
obtained since the vaiue of p can be calculated at A and B.

Assuming that the tangents AC and BC can be substituted for the

characteristic lines between AC and BC, the first approximation to the




GENERAL APPLIED SCIENCE LABORATORIES, INC.

variation of flow properties between A

B 493 and C and B and C can be obtained from
: A,

PaGge 19

N Equations (23) and (25) by assuming that
\\
N the coefficients are constant and equal
>c
-
- to the corresponding values at A and B.
- A
A Fo However, the variation of the entropy
A

along the characteristic lines must be known in order to determine P and 0
at point C.
The assumption that the entropy is a continuous function in the

region of the flow between the streamlines that pass through A and B, plus

the fact that the entropy remains constant along a streamline leads to the

equations
(85) 5 = SG-Sa (28)
(AS)gc = Sc - Sp (29)
and
Sc=Sat(q), (an), =S, () 5 BxG - xa) Ef’;—f;—}ﬂA (30)
Sc = Sp + (), (Al = Sg - (T)gc (kg -xp) %JB (31)

where g% is the gradient normal to the streamlines, and An is the normal

distance between the streamline at A or B and the streamline passing at C.




GENERAL APPLIED SCIENCE LABORATORIES, INC.

Therefore assuming that

ds _ (dS _ (ds
(§), (BT P (32)

Sc can be determined once g’f’f is obtained from the expression

Sg-S
_ B~ 2A (33)

() =
4B Xc - Xp N XC - Xp
E:os(o +p.UA kA Eos(@ - MHB

The pressure Pc and the flow deviation @c can then be obtained from the

relations

) OA'OB’L% Einp.ACosp.A+Sin ppg Cos pBl

Pc= ) 34
c Sin}LACospA+SLnuBCosuB (34)
Y Py Y Pp

1 . Pp-P
0:9A+'§51n“AC°sPA AT TC (35)
Pa

Shock Conditions

The determination of points on the shock were obtained from the

following shock relations,

Vnc ) (y- I)M(:'o Sin®e + 2

Vo _(y+1)MZlSin2e

Sin € (36)

(37)

(38)
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P 2yM2 Sin? € - (y-1)
¢ - = (39)

P, (y + 1)

and the characteristic relation

P, -P 0Ar-0
LZa""c, _TATC g (40)
Y PA Sinl-LACOSH-A

The conservation of tangential momentum across the shock can be expressed
as

V..=V Cos 0 +tan ¢ Sin 0 (41)

o]

The properties at point C (see sketch) on the shock must satisfy both the

shock and characteristic equations, Since the problem was to be performed

on an automatic computing machine, an iterative scheme on Equation (41)

was decided upon as being the most expeditious way of obtaining a solution.
(2) :

o » at C was selected and then € was determined

The shock inclination, ¢

from Equation (41).
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Boundary Conditions

To determine properties on the body
(e. g., Point C), the second family
characteristic equation (Eq. 25) and the

and the geometry of the body are used.

Since the body is a streamline, Sp = SC.
The flow deviation is known for the geometry, thus one can solve

Equation 25 directly for P, That is,

0, -0
Pc=Pp |1 +y —B (42)
Sin p g cos kg

The above equations were programmed for the Bendix G-15
digital computer. In order to systematize the computations, the flow field
was divided into three regions (Figure 13).

l. Region A is defined by the second family line from point S and
the first family line from point B,

2. Region B is defined by the body and the second family line
from point C.

3. Region C is the remaining flow field.

The computation in region C was performed along second family
lines. In this manner, the program is able to sense terminal points of the

body profile.
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Attention is currently being devoted to minimizing the computer
production time while retaining reliability. The problem is hampered
solely due to the limited capacity of the computer availabile. However,
modifications are . eing made which will substantially reduce the computer
production time. Presented in this report are the characteristic analyses
for two angles of attack, namely, a = 0° and a = 5°, In a subsequent report
several additional cases will be presented, including a displacement thick-
ness analysis for which the inviscid two-dimensional characteristic will be
computed,

B. Modified Newtonian Pressure Distribution

This method for predicting the pressure distribution on the surface
of a blunted flat plate is discussed in detail in References 7 and 8, On the
flat portion of a blunted plate, the normal to the free stream direction is
equal to the compliment of the angle of incidence of the plate.

The equation relating the pressure to the plate incidence (Ref, 8)
can be written as

P
P, /P, =Sinfa + _® Cos?a (43)

s ——

P

Se

For a given free stream Mach number, the pressure distribution is solely
a function of surface inclination. Therefore on the constant inclination

surface of the flat plate, the pressure as predicted by Newtonian theory is

constant,
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C. Modified Newtonian Plus Prandti-Meyer Pressure Distribution

This method attempts to modify the body pressure distribution
predicted by the Newtonian theory from the point on the body surface where
the pressure and pressure gradient is equal to that predicted by Prandtl-
Meyer flow. A more complete description of its use is given in Ref, 8,

The Prandtl-Meyer correction to Newtonian theory tends to
alleviate somewhat the overexpansion that the modified Newtonian theory
predicts.

D. Wedge Solution

This method is simply the solution to a pointed two-dimensional
wedge inclined to the free stream at the same angle as the blunted flat
plate. Theoretically, at a large distance downstream from the nose, the
pressures predicted by the blunted flat plate and the wedge solution should
be identical. For a given length flat plate, the wedge technique would
obviously be more applicable for a smaller nose radius on the blunted plate.

E. Creager's Approximate Pressure Distribution for Blunted

Flat Plates

This technique, as outlined more completely in References 9 and
10, assumes that:

l. A detached bow shock wave exists

2. The flow field is comprised of a viscous boundary layer

adjacent to the surface of the body, plus an inviscid region
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between the boundary layer and bow shock.
3. The displacement effect of the boundary layer perturbs the
inviscid flow field,

If the above assumptions are valid then the perturbation may be

expressed as: !

..._PL. = +—-———-—b6M63X (44)
PO.B Rea
where
0.865 Tw
bg = Mg ',}—6'+0.166(y—1) Y (45)

From References 2, 3, 4, and 7 of Reference 9 it is further assumed that
the inviscid pressure is given by a sum of two terms: one including a
contribution due to the surface inclination and the second due to the shock
wave shape.

Therefore it follows that

Paﬁ _Pa +P‘3

Poo Py Poo (46)

Combining Equations (42) and (44) and multiplying both sides by Poo/Ps
e

P Pg |
I_DEEDE_+§‘:_EJ + 1+b6M63/rm§z| (47)

S
Se e

i
The inviscid pressure terms (Eq. (46)) merit some further consideration:
P(l

—— is assumed to be a function of the surface inclination,
[o's)
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As mentioned in Reference 9, this term is assumed to be given
by the modified Newtonian impact theory. However, as pointed out in
Section VD of this report, the surface pressure should approach that value
given by an equivalent wedge.

It is for these reasons that the chordwise pressure distributions
as given by Reference 9, have been calculated by assuming a modified
Newtonian distribution for the large nose radius model and an equivalent
wedge value for the small nose radius model.

The second contribution to the inviscid surface pressure (that due
to shock wave shape) has been computed by utilizing the blast-wave theory.

From Reference 9 this is assumed to be given by:

c 2/3

P

B -BC D__ | Mg (48)
Po Y x(;- A

where

CY =0.112, and Cp, is given by:
x

1

Cp =

P tan 0, dx (49)
% P, M

~la

2

oo
o)

For the body at angle of attack, the inclination of the circular nose is:

@ =90 -a
w

Also

X=Tr -1 cCcosa
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The limits of integration for Equation (47) have been modified in order to

incorporate the portion of the nose which most influences the drag coefficient.

Therefore Cp as suggested in Reference 9 was modified to:
r(l-sin a)

Cp = P tan Ow dx - {50)

2
%PooMoo r

r(l-cos a)

The contribution to the pressure for the zero angle of attack case of each
term in Equation (45) can be seen in Figures 14 and 15 for each of the two

models,
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L 2

VI DISCUSSION OF RESULTS

The pressure distribution on two blunted flat plates were experimental-
ly determined at a nominal Mach number of 8.0 for a 0° to 30° angle of
attack range. Tests were conducted over a free stream Reynolds number
range of 0.43 x 10 to 2.00 x 106 per foot. The two models were blunted
by semicylindrical leading edges with nose radii of 0. 10 inches and 0. 50
inches. Both models had a chord length of 11.0 inches.

The experimental pressure distribution on the cylindrical nose of
Model II(B) (1/2" r) has been plotted and compared to the modified
Newtonian impact theory. The results are shown for several angles of
attack, namely, 0°, 5°, 109, 15° 20° and 30°. Itis generally concluded
that the modified Newtonian theory is in good agreement with experiment
in the nose region of blunt bodies (Ref. 6, page 257), One will note from
the figures (6 to 11) that the agreement with experiment is not as good as
can be expected. It appears that the model angle of attack is greater than
the value indicated on the '"Preliminary Data Sheets'. For example, if the
model angle of attack was 18° or 19° instead of 15° (Fig. 9), the modified
Newtonian theory would'be in good agreement with experiment,

The pressure distribution on the 1/2'" nose radius flat plate model

tends to approach the Newtonian value for all angles of attack (Figs. 16 to 21),

In addition, for the low angle of attack range, blast theory plus the viscous

correction (Refs. 9 and 10) accurately predicts the pressure variation on
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the flat plate. The agreement between the analysis of Reference 9 in the
forward region of the flat plate is quite poor for larger angles of attack.
The asymptotic solution for Creager's analysis for the 1/2"r model is the
Newtonian value. Therefore, even for the larger angles of attack, the blast
theory predicts reasonably well the pressures on fhe rearward portion of
thzt\ plate. The rotational characteristics analysis has been computed for

a a 0°'l":and 50 and the results agree well with experiment.

\F‘c;r the 0, 10" nose radius model, the pressure distribution on the flat
plate tends to approach the wedge value. Hence, the wedge value was used
as the ;symptotic solution in the analysis of Reference 9. The blast solution
plus the viscous correction accurately predicts the pressure distribution on
the flat platex‘ over the entire angle of attack range considered (Figs. 22 to27),
For comparison, the zero blast solution (B = 0, Eq. (48)) is also shown.
For higher angles of attack (200—300) this solution appears to be in slightly
better agreement than the blast theory. This is to be expected, since the
majority of str“‘eamlines that '""wet'" the body pass through the oblique portion
of the bow shock., Hence the blunted flat plate acts more like a sharp wedge.

Several shadowgraphs of each model are shown in Figures 28 to 39 for the

entire angle of attack spectrum.
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Figure 12 - Coordinate System for the Transonic Analysis
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Figure 15 - Comparison of Terms in Creager's Analysis for the
0.50 Inch Nose Radius Flat Plate Model,
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